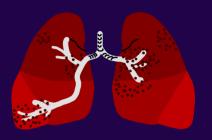


Belfast City Hospital

Dr Bernard Silke, M.D., D.Sc., F.R.C.P,

Clinical Pharmacologist,

Consultant Physician,


Belfast City Hospital, N. Ireland

- The material in these slides is not original it represents a collage taken from several sources
- The graphic representations are mainly based on 'Human Acid-Base Physiology' by Oliver Holmes Chapman & Hall Medical, London, 1993, 0-412-47610-X
- A useful internet site is http://www.northland.cc.mn.us/Terry_Wiseth/acid-base%20balance/ppframe.htm
- Line drawing were prepared with SmartDraw.
 Any feedback or requests (b.silke@qub.ac.U.K.)

- Acid-base balance -- main concern two ions:
 Hydrogen (H⁺)
 Bicarbonate (HCO₃⁻)
- Derangement is common in disease processes
- H⁺ has special significance due to the narrow range compatible with living systems
- Enzymes, hormones and ion distribution are all affected by H⁺ concentrations

CO₂ 25 Mol / day

$$CO_2 + H_2O \longrightarrow H_2CO_3 \longrightarrow H^+ + HCO_3^-$$

Non-carbonic acids 70 mmol/day

Food

Medication

Metabolic intermediates

Lactic acid

Pyruvic acid

Acetoacetic acid

- E.C.F. acceptable pH range maintained by :
- 1) Chemical buffers react very rapidly (< 1 sec)
- 2) Respiratory regulation reacts rapidly (sec to min)
- 3) Renal regulation reacts slowly (min to hr)

- Acids can be defined as a proton (H⁺) donor
- Molecules that dissociate in solution to \rightarrow H⁺
- Physiologically important acids include :

Carbonic acid (H₂CO₃)

Phosphoric acid (H₃PO₄)

Pyruvic acid

Lactic acid

- Bases can be defined as a proton (H⁺) acceptor
- Molecules capable of accepting a H⁺ ion
- Physiologically important bases include :

Bicarbonate (HCO₃-)

Biphosphate (HPO₄-2)

A buffer consists of a buffer pair; it is a mixture of a weak acid and its salt

Apply the law of mass action:

$$[H^{+}] * [A^{-}] / [HA] = K$$

$$[H^{+}] = K * [HA] / [A^{-}]$$

$$- \log[H^+] = -\log K - \log[HA] / [A^-]$$

(1)
$$pH = pK + log [A^-] / [HA]$$

Henderson Hasselbalch

$$pH = 6.1 + log [HCO_3^-] / [CO_2]$$

$$pH = 6.1 + log 24 / 1.2 = 7.4$$

Normality

Under normal physiological conditions pH can be calculated from the 20:1 ratio of bicarbonate and carbonic acid to lie close to 7.4

Maintained within narrow limits

```
pH 7.35 to 7.45
```

- pH = Alkalemia (high blood pH)
- □ pH = Acidemia (low blood pH)

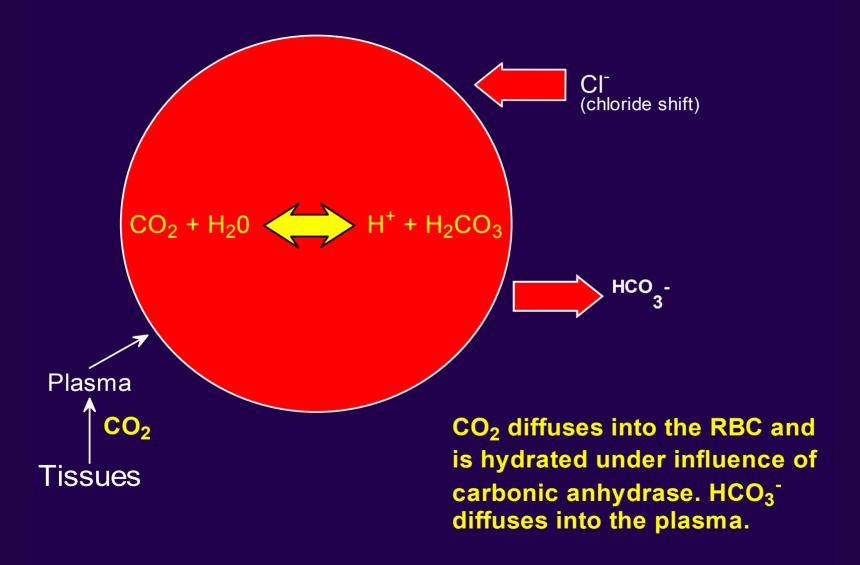
pH 6.7 to 7.9 compatible with life

- pH scale expresses [H⁺] in H₂O solutions
- Water ionizes to a limited extent to form equal amounts of H⁺ and OH⁻ ions

$$H_2O \longrightarrow H^+ + OH^-$$
 acid base

Pure H_2O is neutral (pH = 7.0 : H^+ = OH^-)

Acid (pH < $7.0 : H^+ > OH^-$)


Base (pH > $7.0 : H^+ < OH^-$)

- Acidosis / alkalosis are physiological conditions where either :
 - A relative increase in H⁺ ion (acidosis)
 - A relative increase in HCO₃-ion (alkalosis)
- Deviations from this ratio [HCO₃-] / [H₂CO₃] used to identify acid-base imbalances (pH 7.4 -- 20:1)
- Normal levels 24 and 1.2 mEq / L (HCO₃- / H₂CO₃)

- Acidosis a decrease in 20:1 base to acid ratio :
 An increase in H⁺ ion concentration
 A decrease in amount of HCO₃⁻ ion
 Excessive acid or deficient base
- Acidosis an increase in the base to acid ratio:
 An decrease in number of H⁺ ions
 An increase in amount of HCO₃⁻
 Base excess or acid deficit

CARBON DIOXIDE DIFFUSION

Red Blood Cell

The ratio $[HCO_3^-]$ / $[H_2CO_3]$ determines the acid-base status

$$pH = 6.1 + log 24 / 1.2 = 7.4$$
 (Normal status)

Add 12 mM of strong acid to 1L of E.C.F.

$$pH = 6.1 + log 12 / 13.2 = 6.06 (Closed system)$$

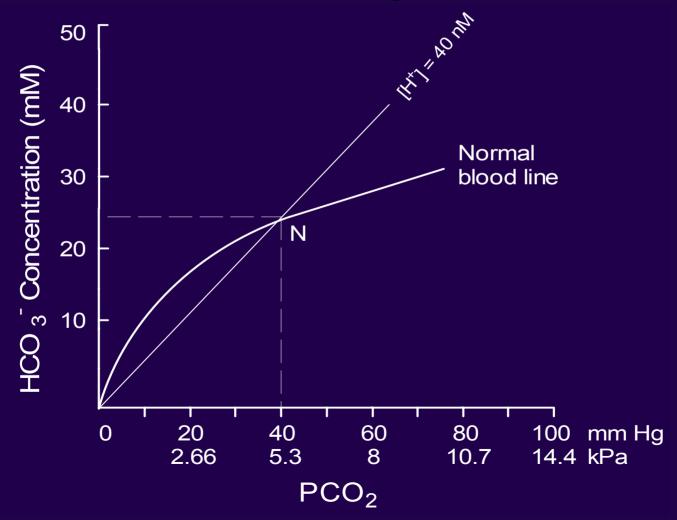
$$pH = 6.1 + log 12 / 1.2 = 7.1 (Open system)$$

- To minimize the pH alteration requires alteration of the [HCO₃-] / [H₂CO₃] ratio
- The ability to regulate the PCO₂ limits the pH change that would otherwise occur; this makes the HCO₃-/H₂CO₃ system a near perfect buffer (respiratory adjustment)
- The HCO₃⁻ level is under separate renal physiological control (metabolic adjustment)

- Intracellular Buffers
 - Proteins
 - Haemoglobin
 - Phosphate
- Bone buffers
- Extracellular Buffers
 - Proteins
 - Phosphate
 - Bicarbonate

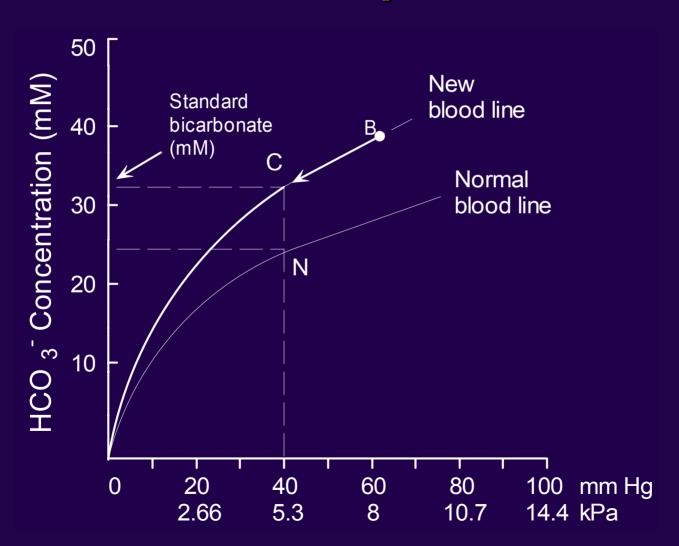
Acidosis - an excess of unwanted acid in the blood; pH may be normal

Alkalosis - an excess of unwanted alkali in the blood; pH may be normal

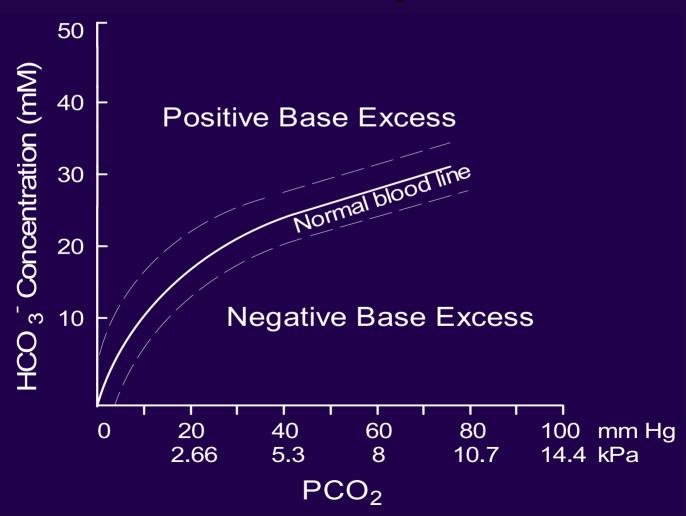

- Most important buffer : CO₂- bicarbonate pair
- Other buffers termed non-bicarbonate
- Legitimate to consider these 'protein buffer'
- Blood buffer capacity is approx.. 48 mmol
- 50% of buffering due to CO₂- bicarbonate pair
- Acid base status cannot be assessed purely from a knowledge of the bicarbonate status

Whole blood buffering of an acid load

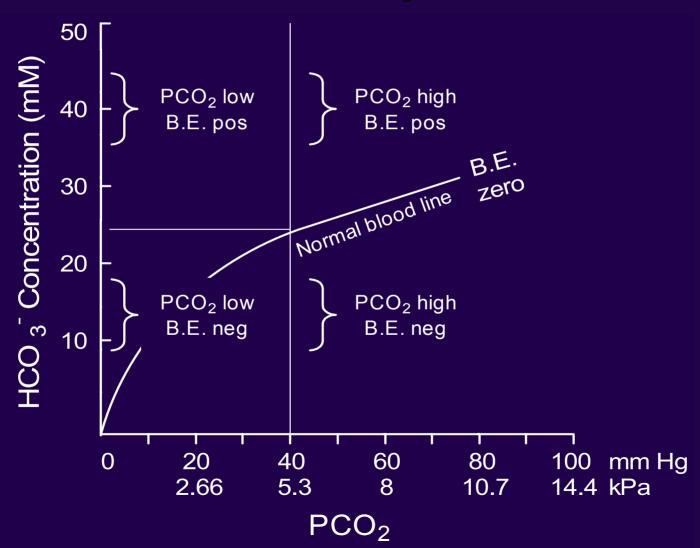
CO ₂	Non-HCO ₃ buffers	100%
Fixed acid	Bicarbonate Plasma RBC's	35% 18%
	Haemoglobin Plasma proteins Phosphate	35% 7% 5%


- Components of Acid-base disorder
 Respiratory indicated by PCO₂
 Metabolic indicated by the blood line shift
- Standard bicarbonate
 - The bicarbonate concentration in mM in the plasma of oxygenated whole blood equilibrated with a PCO₂ of 5.3 kPa at 37°C
 - < 22 mM metabolic acidosis : > 26 mM alkalosis

- The variables of the Henderson-Hasselbalch equation are [H⁺], [HCO₃-] and [CO₂]
- Each pair can be plotted on linear or log scale
- The following convention has been adopted to plot [HCO₃-] as a linear function of [PCO₂]
- To determine the standard [HCO₃-], [PCO₂] is manipulated and these changing relationships are easy to visualize and interpret


- In the system
 Iso-pH lines are linear and pass through origin pH relationships easy to appreciate
 Blood line is curved, resembling the carbon dioxide dissociation curve
 However not desirable as a normogram method
- Siggaard-Andersen normogram uses log plots for both axes and consequently the third variable is a straight line (BE & buffer base)

- Standard HCO₃⁻ imperfect measure of acid-base status. Incomplete representation of buffers
- Only estimates the HCO₃-/ H₂CO₃ contribution
- Measure both [HCO₃-] and [Pr-] components
 because the latter is 50% of buffering capacity
- This measure is termed the Base Excess
- To measure directly a process of 'back titration'

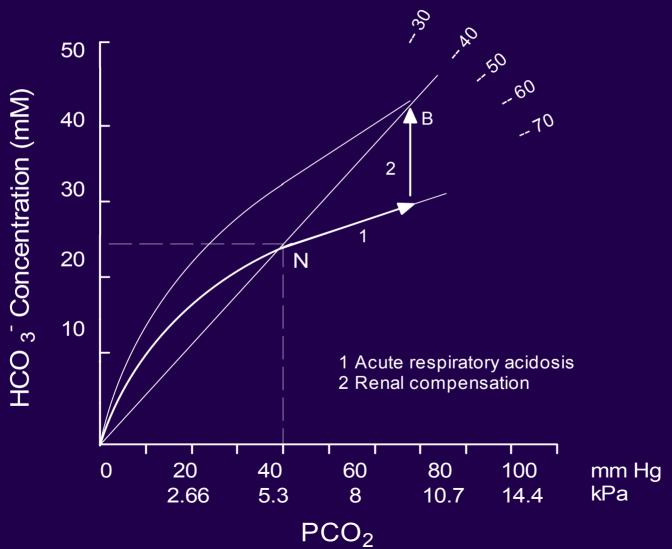


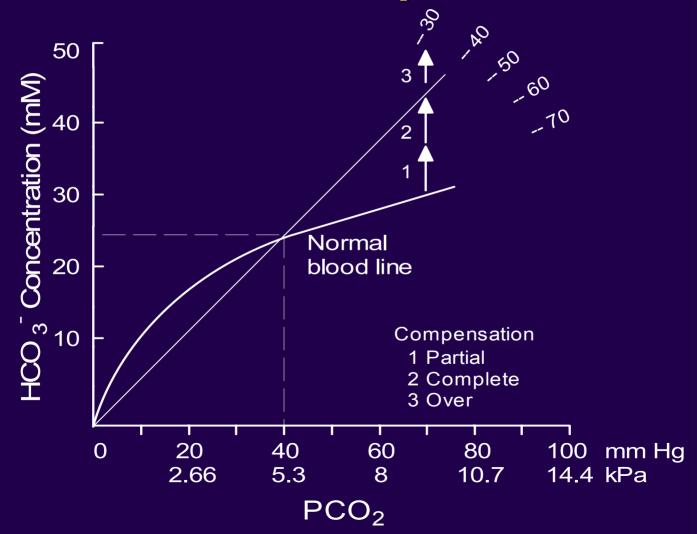
- Base Excess is the change from normal of the concentration of [HCO₃-] and [Pr-] buffer base
- To estimate directly, first remove respiratory component. Equilibrate blood at 37°C and PCO₂ of 5.3 kPa and 'back titrate' to pH 7.4
- Quantitatively Base Excess is the amount of acid (mM) to be added to 1 L of whole blood to return pH to 7.4 (normal range ± 2.5 mM)

- Knowledge of the HCO₃- and PCO₂ defines a point on the acid-base chart
- Insufficient information to calculate Base Excess and estimate the extent of blood buffering
- BE calculated from amount of strong acid or base required to restore pH (back titration)
- Siggaard-Andersen normogram obviate need

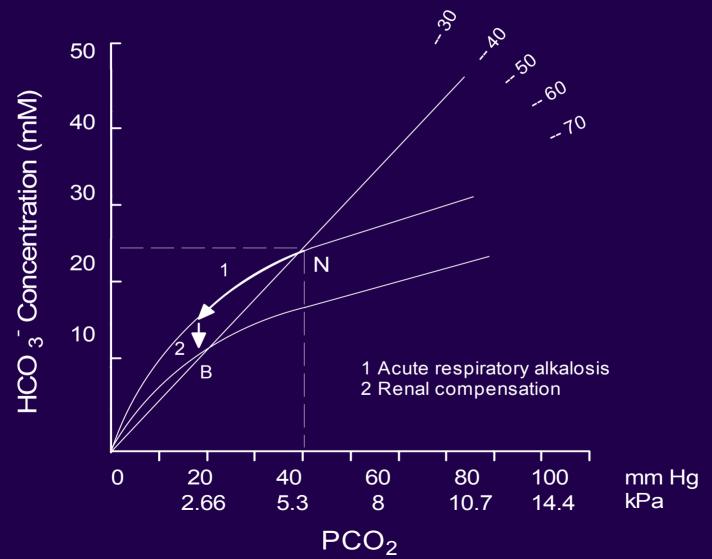
	Compen- sated	Respiratory component	Metabolic component
Respiratory acidosis	No	High	Zero
acidosis	Yes	High	High
Metabolic alkalosis	No	Zero	High
aikaiUSiS	Yes	High	High

- Carbon dioxide is a respiratory gas
- In aqueous solution it is a weak acid $CO_2 + H_2O = H^+ + HCO_3^-$
- Hypoventilation, with CO₂ accumulation, acidification of ECF - respiratory acidosis
- Hyperventilation with CO₂ 'washout' leads to respiratory alkalosis

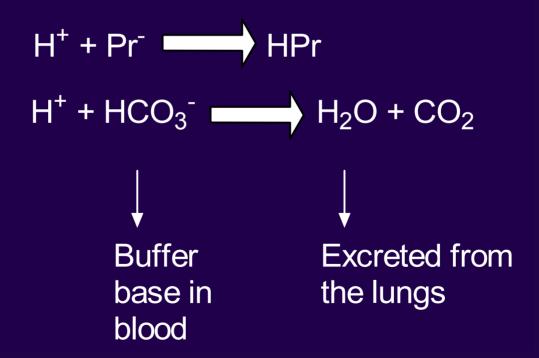

- Hypoventilation pulmonary ventilation reduced
- Respiratory movements may be increased
- Conditions causing respiratory acidosis:
 - Depressed respiratory centre (drug abuse)
 - **Obstructive airways disease**
 - Inhaled foreign object
 - **Bronchoconstriction (Acute asthma)**


PCO₂ mm Hg [HCO₃⁻] mM [H⁺] nM

Uncompensated High 80 (10.7) High 29 High 67 Acute (min to hr)


Renal (HCO₃⁻) compensation High 80 (10.7) High 48 Normal 40 Chronic (hr to days)

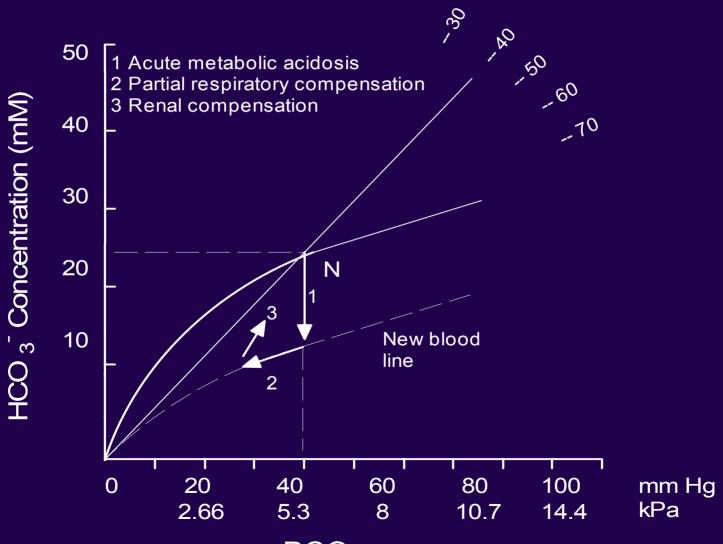
- Respiratory acidosis increase in PCO₂
- Rise in H⁺ is buffered by blood buffers
- Acute lack of physiological compensation
- Compensation is due to renal HCO₃- retention
- Compensation not restore blood chemistry
- Adjusts [HCO₃-] / [CO₂] ratio to restore pH


- Hyperventilation pulmonary ventilation ↑
- Loss of CO₂ exceeding production rate
- Conditions causing respiratory alkalosis:
 - **Anxiety and emotional disturbances**
 - Salicylate poisoning (overdose)
 - **Assisted ventilation**
 - High altitude (low environmental O₂)

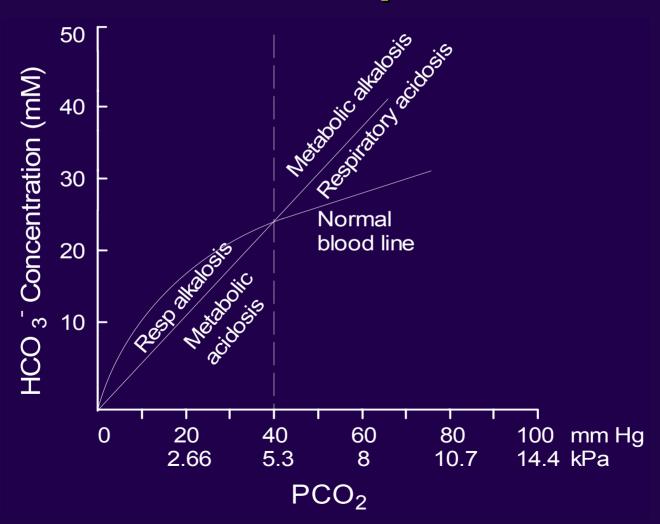
- Non-respiratory disturbances termed metabolic
- Large variety of primary abnormalities --> in excess of non-respiratory acid / alkali
- Excessive intake of acid or alkali or renal defects Ingestion of acid or alkali (mouth, injection etc.)
 Excessive GI losses (vomiting, diarrhoea)
 Abnormal metabolism (diabetes mellitus)
 Renal failure or tubular defects

- Metabolic acidosis may result from exercise
- Accumulation of tissue metabolites, including lactic acid consequent on anaerobic metabolism
- Diabetes mellitus accumulation of ketone bodies
 Aceto-acetic acid and β-OH butyric acid
- Non-volatile or fixed acids not blown off
- Other diseases include CHF and renal failure

Initial response to acute metabolic acidosis



PCO₂ mm Hg $[HCO_3]$ mM $[H^{\dagger}]$ nM


Uncompen sated High 80 (10.7) 72 (9.4) Normal 40 Low 12 Acute

Respiratory (PCO₂)High Low 30 Low 10 Chronic (min to hr) (hr to days)

Renal (HCO_3) High 50 (6.66) Low 35 Low 17 Chronic (hr to days)

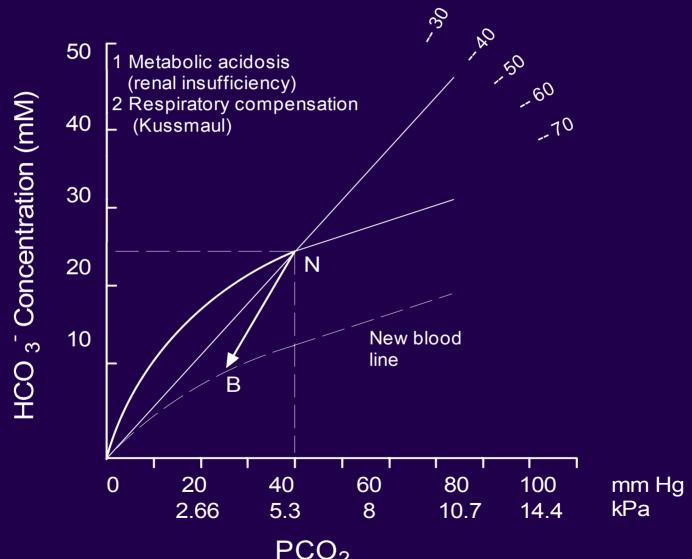
- Fixed acid accumulation usually gradual: uncommon for acute uncompensated process
- Uncompensated would be represented as a reduced HCO₃ and pH without change in PCO₂
- Partial respiratory compensation is achieved by a further reduction in PCO₂
- Renal compensation involves HCO₃ retention

- 80 yr. old male
- Nursing home
- Previous CVA * 3
- Debilitated
- Poor QOL
- Recent gradual deterioration with mental obtundation

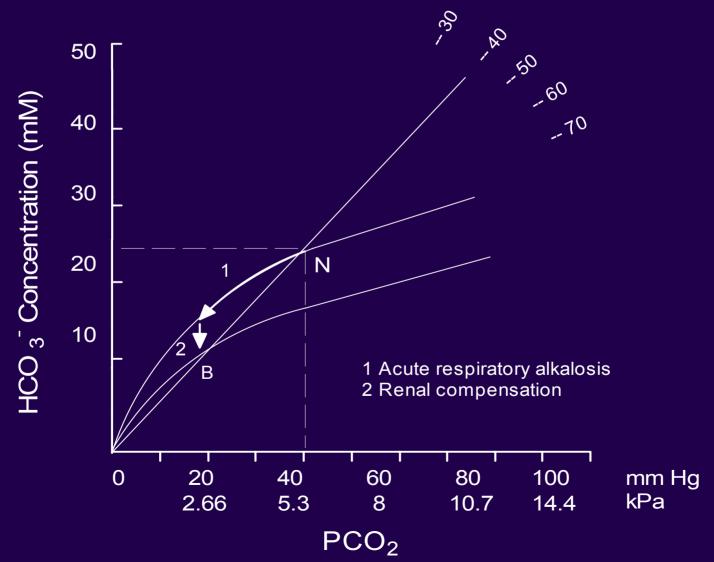
O₂ 10.28 kPa

pCO₂ 3.04 kPa

B.E. -10.5 mm/l

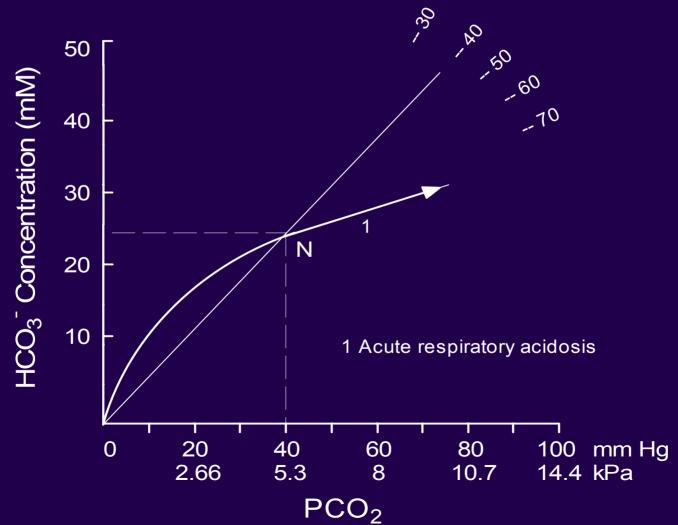

pH 7.34

Na⁺ 135.4 mEq/l

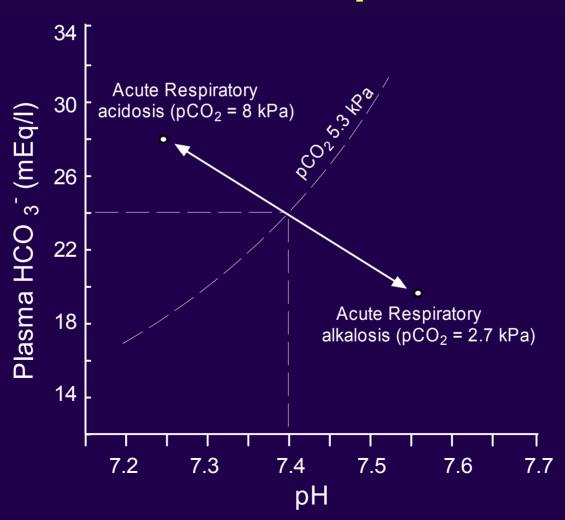

K⁺ 7.7 mEq/l

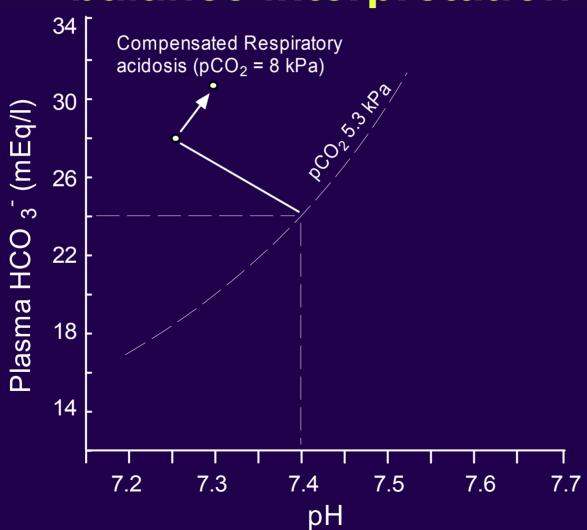
Cl⁻ 100.2 mEq/l

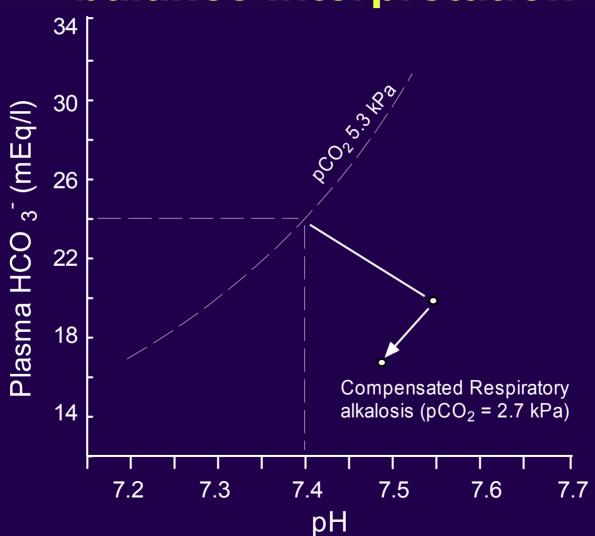
Cr. 930 umol/l

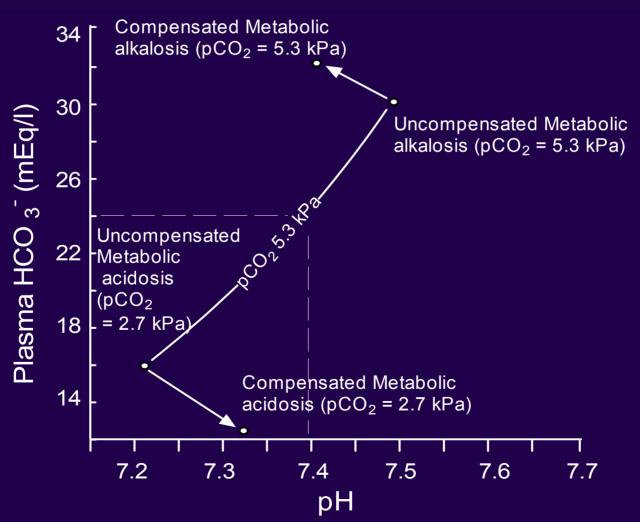


- Aspirin therapeutic dosage
 Central respiratory stimulation (alkalosis)
 Renal compensation with HCO₃-loss
 Compensated respiratory alkalosis
- Aspirin overdose with toxicity
 Changes resemble metabolic acidosis
 Low plasma HCO₃⁻ and normal PCO₂
 Combined respiratory and metabolic acidosis

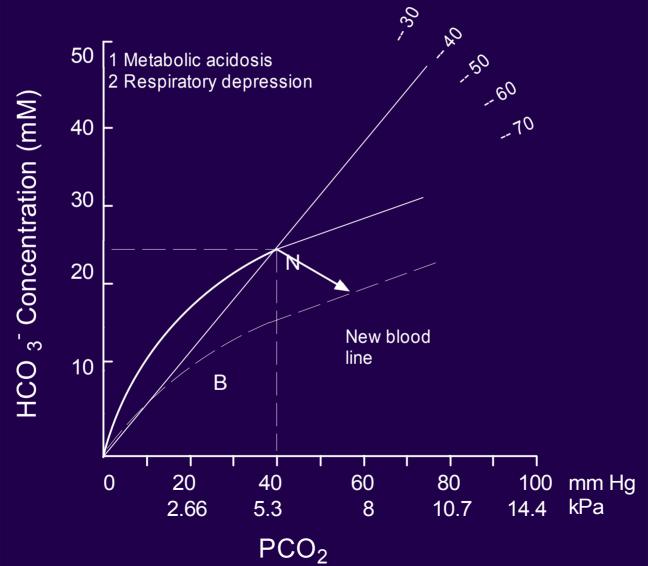



- 25 yr. old female
- Chronic depression
- Unconscious
- Overdose barbiturates
- Hypoventilation


- pH 7.25
- pCO₂ 8.0 kPa
- pO₂ 10.7 kPa
- HCO₃- 29
- BE 0 mM



- It is also possible to represent change in acid base status after Davenport (ABC of acid-base chemistry) in terms of pH / HCO⁻₃ relationships
- Changes in CO₂ move the relationship up and to the left (increase) or down / right (decrease)
- Metabolic changes (addition or subtraction of acid) are represents as 'Iso-CO₂ line' changes



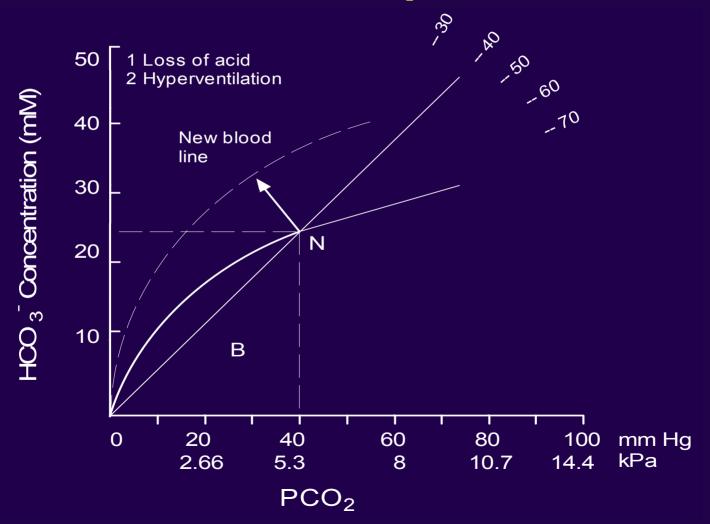
- 18 yr. old male
- Drink driving
- RTA & unconscious
- Multiple injuries, shock, rib fractures
- Crushed legs

- pH
- pCO₂
- pO₂
- HCO₃-
- BE

- 7.1
- 8.0 kPa
- 10.7 kPa
- 18
- 10 mM

- 45 yr. old female
- Post bowel surgery
- IPP ventilation
- Naso-gastric suction

- pH
- pCO₂
- pO₂
- HCO₃-
- BE


10 mM

32

7.65

4.0 kPa

11.6 kPa

- 75 yr. old male
- Smoker 30+ many yr.
- Severe COAD
- Frequent hospitalization with acute exacerbation

- pH 7.35
- pCO₂
- pO₂
- HCO₃-
- BE

8 mM

35

7.9 kPa

8.0 kPa

- 35 yr. old male
- Fit athlete
- Astronomer
- Relocated to site observatory 10,000 ft
- Blood gases at 1 mth

- pH
- pCO₂
- \bullet pO_2
- HCO₃-
- BE

- 7.35
- 3.8 kPa
- 11.5 kPa
- 18
- 5 mM

The End